Qt
Internal/Contributor docs for the Qt SDK. Note: These are NOT official API docs; those are found at https://doc.qt.io/
Loading...
Searching...
No Matches
flatemodule.cpp
Go to the documentation of this file.
1// Copyright 2014 The PDFium Authors
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
6
7#include "core/fxcodec/flate/flatemodule.h"
8
9#include <stdint.h>
10#include <string.h>
11
12#include <algorithm>
13#include <limits>
14#include <memory>
15#include <utility>
16#include <vector>
17
18#include "core/fxcodec/scanlinedecoder.h"
19#include "core/fxcrt/data_vector.h"
20#include "core/fxcrt/fixed_size_data_vector.h"
21#include "core/fxcrt/fx_extension.h"
22#include "core/fxcrt/fx_memory_wrappers.h"
23#include "core/fxcrt/fx_safe_types.h"
24#include "core/fxcrt/span_util.h"
25#include "core/fxge/calculate_pitch.h"
26#include "third_party/base/check.h"
27#include "third_party/base/containers/span.h"
28#include "third_party/base/notreached.h"
29#include "third_party/base/numerics/safe_conversions.h"
30
31#if defined(USE_SYSTEM_ZLIB)
32#include <zlib.h>
33#else
34#include "third_party/zlib/zlib.h"
35#endif
36
37extern "C" {
38
39static void* my_alloc_func(void* opaque,
40 unsigned int items,
41 unsigned int size) {
42 return FX_Alloc2D(uint8_t, items, size);
43}
44
45static void my_free_func(void* opaque, void* address) {
46 FX_Free(address);
47}
48
49} // extern "C"
50
51namespace fxcodec {
52
53namespace {
54
55static constexpr uint32_t kMaxTotalOutSize = 1024 * 1024 * 1024; // 1 GiB
56
57uint32_t FlateGetPossiblyTruncatedTotalOut(z_stream* context) {
58 return std::min(pdfium::base::saturated_cast<uint32_t>(context->total_out),
59 kMaxTotalOutSize);
60}
61
62uint32_t FlateGetPossiblyTruncatedTotalIn(z_stream* context) {
63 return pdfium::base::saturated_cast<uint32_t>(context->total_in);
64}
65
66bool FlateCompress(unsigned char* dest_buf,
67 unsigned long* dest_size,
68 const unsigned char* src_buf,
69 unsigned long src_size) {
70 return compress(dest_buf, dest_size, src_buf, src_size) == Z_OK;
71}
72
73z_stream* FlateInit() {
74 z_stream* p = FX_Alloc(z_stream, 1);
75 p->zalloc = my_alloc_func;
76 p->zfree = my_free_func;
77 inflateInit(p);
78 return p;
79}
80
81void FlateInput(z_stream* context, pdfium::span<const uint8_t> src_buf) {
82 context->next_in = const_cast<unsigned char*>(src_buf.data());
83 context->avail_in = static_cast<uint32_t>(src_buf.size());
84}
85
86uint32_t FlateOutput(z_stream* context,
87 unsigned char* dest_buf,
88 uint32_t dest_size) {
89 context->next_out = dest_buf;
90 context->avail_out = dest_size;
91 uint32_t pre_pos = FlateGetPossiblyTruncatedTotalOut(context);
92 int ret = inflate(static_cast<z_stream*>(context), Z_SYNC_FLUSH);
93
94 uint32_t post_pos = FlateGetPossiblyTruncatedTotalOut(context);
95 DCHECK(post_pos >= pre_pos);
96
97 uint32_t written = post_pos - pre_pos;
98 if (written < dest_size)
99 memset(dest_buf + written, '\0', dest_size - written);
100
101 return ret;
102}
103
104uint32_t FlateGetAvailOut(z_stream* context) {
105 return context->avail_out;
106}
107
108void FlateEnd(z_stream* context) {
109 inflateEnd(context);
110 FX_Free(context);
111}
112
113// For use with std::unique_ptr<z_stream>.
114struct FlateDeleter {
115 inline void operator()(z_stream* context) { FlateEnd(context); }
116};
117
118class CLZWDecoder {
119 public:
120 CLZWDecoder(pdfium::span<const uint8_t> src_span, bool early_change);
121
122 bool Decode();
123 uint32_t GetSrcSize() const { return (src_bit_pos_ + 7) / 8; }
124 uint32_t GetDestSize() const { return dest_byte_pos_; }
125 std::unique_ptr<uint8_t, FxFreeDeleter> TakeDestBuf() {
126 return std::move(dest_buf_);
127 }
128
129 private:
130 void AddCode(uint32_t prefix_code, uint8_t append_char);
131 void DecodeString(uint32_t code);
132 void ExpandDestBuf(uint32_t additional_size);
133
134 pdfium::span<const uint8_t> const src_span_;
135 std::unique_ptr<uint8_t, FxFreeDeleter> dest_buf_;
136 uint32_t src_bit_pos_ = 0;
137 uint32_t dest_buf_size_ = 0; // Actual allocated size.
138 uint32_t dest_byte_pos_ = 0; // Size used.
139 uint32_t stack_len_ = 0;
140 FixedSizeDataVector<uint8_t> decode_stack_;
141 const uint8_t early_change_;
142 uint8_t code_len_ = 9;
143 uint32_t current_code_ = 0;
144 FixedSizeDataVector<uint32_t> codes_;
145};
146
147CLZWDecoder::CLZWDecoder(pdfium::span<const uint8_t> src_span,
148 bool early_change)
149 : src_span_(src_span),
150 decode_stack_(FixedSizeDataVector<uint8_t>::Zeroed(4000)),
151 early_change_(early_change ? 1 : 0),
152 codes_(FixedSizeDataVector<uint32_t>::Zeroed(5021)) {}
153
154void CLZWDecoder::AddCode(uint32_t prefix_code, uint8_t append_char) {
155 if (current_code_ + early_change_ == 4094)
156 return;
157
158 pdfium::span<uint32_t> codes_span = codes_.span();
159 codes_span[current_code_++] = (prefix_code << 16) | append_char;
160 if (current_code_ + early_change_ == 512 - 258)
161 code_len_ = 10;
162 else if (current_code_ + early_change_ == 1024 - 258)
163 code_len_ = 11;
164 else if (current_code_ + early_change_ == 2048 - 258)
165 code_len_ = 12;
166}
167
168void CLZWDecoder::DecodeString(uint32_t code) {
169 pdfium::span<uint8_t> decode_span = decode_stack_.span();
170 pdfium::span<const uint32_t> codes_span = codes_.span();
171 while (true) {
172 int index = code - 258;
173 if (index < 0 || static_cast<uint32_t>(index) >= current_code_)
174 break;
175
176 uint32_t data = codes_span[index];
177 if (stack_len_ >= decode_span.size())
178 return;
179
180 decode_span[stack_len_++] = static_cast<uint8_t>(data);
181 code = data >> 16;
182 }
183 if (stack_len_ >= decode_span.size())
184 return;
185
186 decode_span[stack_len_++] = static_cast<uint8_t>(code);
187}
188
189void CLZWDecoder::ExpandDestBuf(uint32_t additional_size) {
190 FX_SAFE_UINT32 new_size = std::max(dest_buf_size_ / 2, additional_size);
191 new_size += dest_buf_size_;
192 if (!new_size.IsValid()) {
193 dest_buf_.reset();
194 return;
195 }
196
197 dest_buf_size_ = new_size.ValueOrDie();
198 dest_buf_.reset(FX_Realloc(uint8_t, dest_buf_.release(), dest_buf_size_));
199}
200
201bool CLZWDecoder::Decode() {
202 pdfium::span<uint8_t> decode_span = decode_stack_.span();
203 uint32_t old_code = 0xFFFFFFFF;
204 uint8_t last_char = 0;
205
206 // In one PDF test set, 40% of Decode() calls did not need to realloc with
207 // this size.
208 dest_buf_size_ = 512;
209 dest_buf_.reset(FX_Alloc(uint8_t, dest_buf_size_));
210 while (true) {
211 if (src_bit_pos_ + code_len_ > src_span_.size() * 8)
212 break;
213
214 int byte_pos = src_bit_pos_ / 8;
215 int bit_pos = src_bit_pos_ % 8;
216 uint8_t bit_left = code_len_;
217 uint32_t code = 0;
218 if (bit_pos) {
219 bit_left -= 8 - bit_pos;
220 code = (src_span_[byte_pos++] & ((1 << (8 - bit_pos)) - 1)) << bit_left;
221 }
222 if (bit_left < 8) {
223 code |= src_span_[byte_pos] >> (8 - bit_left);
224 } else {
225 bit_left -= 8;
226 code |= src_span_[byte_pos++] << bit_left;
227 if (bit_left)
228 code |= src_span_[byte_pos] >> (8 - bit_left);
229 }
230 src_bit_pos_ += code_len_;
231
232 if (code < 256) {
233 if (dest_byte_pos_ >= dest_buf_size_) {
234 ExpandDestBuf(dest_byte_pos_ - dest_buf_size_ + 1);
235 if (!dest_buf_)
236 return false;
237 }
238
239 dest_buf_.get()[dest_byte_pos_] = (uint8_t)code;
240 dest_byte_pos_++;
241 last_char = (uint8_t)code;
242 if (old_code != 0xFFFFFFFF)
243 AddCode(old_code, last_char);
244 old_code = code;
245 continue;
246 }
247 if (code == 256) {
248 code_len_ = 9;
249 current_code_ = 0;
250 old_code = 0xFFFFFFFF;
251 continue;
252 }
253 if (code == 257)
254 break;
255
256 // Case where |code| is 258 or greater.
257 if (old_code == 0xFFFFFFFF)
258 return false;
259
260 DCHECK(old_code < 256 || old_code >= 258);
261 stack_len_ = 0;
262 if (code - 258 >= current_code_) {
263 if (stack_len_ < decode_stack_.size())
264 decode_span[stack_len_++] = last_char;
265 DecodeString(old_code);
266 } else {
267 DecodeString(code);
268 }
269
270 FX_SAFE_UINT32 safe_required_size = dest_byte_pos_;
271 safe_required_size += stack_len_;
272 if (!safe_required_size.IsValid())
273 return false;
274
275 uint32_t required_size = safe_required_size.ValueOrDie();
276 if (required_size > dest_buf_size_) {
277 ExpandDestBuf(required_size - dest_buf_size_);
278 if (!dest_buf_)
279 return false;
280 }
281
282 for (uint32_t i = 0; i < stack_len_; i++)
283 dest_buf_.get()[dest_byte_pos_ + i] = decode_span[stack_len_ - i - 1];
284 dest_byte_pos_ += stack_len_;
285 last_char = decode_span[stack_len_ - 1];
286 if (old_code >= 258 && old_code - 258 >= current_code_)
287 break;
288
289 AddCode(old_code, last_char);
290 old_code = code;
291 }
292 return dest_byte_pos_ != 0;
293}
294
295uint8_t PathPredictor(int a, int b, int c) {
296 int p = a + b - c;
297 int pa = abs(p - a);
298 int pb = abs(p - b);
299 int pc = abs(p - c);
300 if (pa <= pb && pa <= pc)
301 return (uint8_t)a;
302 if (pb <= pc)
303 return (uint8_t)b;
304 return (uint8_t)c;
305}
306
307void PNG_PredictLine(pdfium::span<uint8_t> dest_span,
308 pdfium::span<const uint8_t> src_span,
309 pdfium::span<const uint8_t> last_span,
310 int bpc,
311 int nColors,
312 int nPixels) {
313 uint8_t* pDestData = dest_span.data();
314 const uint8_t* pSrcData = src_span.data();
315 const uint8_t* pLastLine = last_span.data();
316 const uint32_t row_size = fxge::CalculatePitch8OrDie(bpc, nColors, nPixels);
317 const uint32_t BytesPerPixel = (bpc * nColors + 7) / 8;
318 uint8_t tag = pSrcData[0];
319 if (tag == 0) {
320 memmove(pDestData, pSrcData + 1, row_size);
321 return;
322 }
323 for (uint32_t byte = 0; byte < row_size; ++byte) {
324 uint8_t raw_byte = pSrcData[byte + 1];
325 switch (tag) {
326 case 1: {
327 uint8_t left = 0;
328 if (byte >= BytesPerPixel) {
329 left = pDestData[byte - BytesPerPixel];
330 }
331 pDestData[byte] = raw_byte + left;
332 break;
333 }
334 case 2: {
335 uint8_t up = 0;
336 if (pLastLine) {
337 up = pLastLine[byte];
338 }
339 pDestData[byte] = raw_byte + up;
340 break;
341 }
342 case 3: {
343 uint8_t left = 0;
344 if (byte >= BytesPerPixel) {
345 left = pDestData[byte - BytesPerPixel];
346 }
347 uint8_t up = 0;
348 if (pLastLine) {
349 up = pLastLine[byte];
350 }
351 pDestData[byte] = raw_byte + (up + left) / 2;
352 break;
353 }
354 case 4: {
355 uint8_t left = 0;
356 if (byte >= BytesPerPixel) {
357 left = pDestData[byte - BytesPerPixel];
358 }
359 uint8_t up = 0;
360 if (pLastLine) {
361 up = pLastLine[byte];
362 }
363 uint8_t upper_left = 0;
364 if (byte >= BytesPerPixel && pLastLine) {
365 upper_left = pLastLine[byte - BytesPerPixel];
366 }
367 pDestData[byte] = raw_byte + PathPredictor(left, up, upper_left);
368 break;
369 }
370 default:
371 pDestData[byte] = raw_byte;
372 break;
373 }
374 }
375}
376
377bool PNG_Predictor(int Colors,
378 int BitsPerComponent,
379 int Columns,
380 std::unique_ptr<uint8_t, FxFreeDeleter>* data_buf,
381 uint32_t* data_size) {
382 const uint32_t row_size =
383 fxge::CalculatePitch8(BitsPerComponent, Colors, Columns).value_or(0);
384 if (row_size == 0) {
385 return false;
386 }
387
388 const uint32_t src_row_size = row_size + 1;
389 if (src_row_size == 0) {
390 // Avoid divide by 0.
391 return false;
392 }
393 const uint32_t row_count = (*data_size + row_size) / src_row_size;
394 if (row_count == 0) {
395 return false;
396 }
397
398 const uint32_t last_row_size = *data_size % src_row_size;
399 std::unique_ptr<uint8_t, FxFreeDeleter> dest_buf(
400 FX_Alloc2D(uint8_t, row_size, row_count));
401 uint32_t byte_cnt = 0;
402 const uint8_t* pSrcData = data_buf->get();
403 uint8_t* pDestData = dest_buf.get();
404 const uint8_t* pPrevDestData = nullptr;
405 for (uint32_t row = 0; row < row_count; row++) {
406 uint8_t tag = pSrcData[0];
407 byte_cnt++;
408 if (tag == 0) {
409 uint32_t move_size = row_size;
410 if ((row + 1) * (move_size + 1) > *data_size) {
411 move_size = last_row_size - 1;
412 }
413 memcpy(pDestData, pSrcData + 1, move_size);
414 pSrcData += move_size + 1;
415 pPrevDestData = pDestData;
416 pDestData += move_size;
417 byte_cnt += move_size;
418 continue;
419 }
420
421 const uint32_t BytesPerPixel = (Colors * BitsPerComponent + 7) / 8;
422 for (uint32_t byte = 0; byte < row_size && byte_cnt < *data_size;
423 ++byte, ++byte_cnt) {
424 uint8_t raw_byte = pSrcData[byte + 1];
425 switch (tag) {
426 case 1: {
427 uint8_t left = 0;
428 if (byte >= BytesPerPixel) {
429 left = pDestData[byte - BytesPerPixel];
430 }
431 pDestData[byte] = raw_byte + left;
432 break;
433 }
434 case 2: {
435 uint8_t up = 0;
436 if (pPrevDestData) {
437 up = pPrevDestData[byte];
438 }
439 pDestData[byte] = raw_byte + up;
440 break;
441 }
442 case 3: {
443 uint8_t left = 0;
444 if (byte >= BytesPerPixel) {
445 left = pDestData[byte - BytesPerPixel];
446 }
447 uint8_t up = 0;
448 if (pPrevDestData) {
449 up = pPrevDestData[byte];
450 }
451 pDestData[byte] = raw_byte + (up + left) / 2;
452 break;
453 }
454 case 4: {
455 uint8_t left = 0;
456 if (byte >= BytesPerPixel) {
457 left = pDestData[byte - BytesPerPixel];
458 }
459 uint8_t up = 0;
460 if (pPrevDestData) {
461 up = pPrevDestData[byte];
462 }
463 uint8_t upper_left = 0;
464 if (pPrevDestData && byte >= BytesPerPixel) {
465 upper_left = pPrevDestData[byte - BytesPerPixel];
466 }
467 pDestData[byte] = raw_byte + PathPredictor(left, up, upper_left);
468 break;
469 }
470 default:
471 pDestData[byte] = raw_byte;
472 break;
473 }
474 }
475 pSrcData += src_row_size;
476 pPrevDestData = pDestData;
477 pDestData += row_size;
478 }
479 *data_buf = std::move(dest_buf);
480 *data_size = row_size * row_count -
481 (last_row_size > 0 ? (src_row_size - last_row_size) : 0);
482 return true;
483}
484
485void TIFF_PredictLine(uint8_t* dest_buf,
486 uint32_t row_size,
487 int BitsPerComponent,
488 int Colors,
489 int Columns) {
490 if (BitsPerComponent == 1) {
491 int row_bits = std::min(BitsPerComponent * Colors * Columns,
492 pdfium::base::checked_cast<int>(row_size * 8));
493 int index_pre = 0;
494 int col_pre = 0;
495 for (int i = 1; i < row_bits; i++) {
496 int col = i % 8;
497 int index = i / 8;
498 if (((dest_buf[index] >> (7 - col)) & 1) ^
499 ((dest_buf[index_pre] >> (7 - col_pre)) & 1)) {
500 dest_buf[index] |= 1 << (7 - col);
501 } else {
502 dest_buf[index] &= ~(1 << (7 - col));
503 }
504 index_pre = index;
505 col_pre = col;
506 }
507 return;
508 }
509 int BytesPerPixel = BitsPerComponent * Colors / 8;
510 if (BitsPerComponent == 16) {
511 for (uint32_t i = BytesPerPixel; i + 1 < row_size; i += 2) {
512 uint16_t pixel =
513 (dest_buf[i - BytesPerPixel] << 8) | dest_buf[i - BytesPerPixel + 1];
514 pixel += (dest_buf[i] << 8) | dest_buf[i + 1];
515 dest_buf[i] = pixel >> 8;
516 dest_buf[i + 1] = (uint8_t)pixel;
517 }
518 } else {
519 for (uint32_t i = BytesPerPixel; i < row_size; i++) {
520 dest_buf[i] += dest_buf[i - BytesPerPixel];
521 }
522 }
523}
524
525bool TIFF_Predictor(int Colors,
526 int BitsPerComponent,
527 int Columns,
528 std::unique_ptr<uint8_t, FxFreeDeleter>* data_buf,
529 uint32_t* data_size) {
530 uint32_t row_size =
531 fxge::CalculatePitch8(BitsPerComponent, Colors, Columns).value_or(0);
532 if (row_size == 0)
533 return false;
534
535 const uint32_t row_count = (*data_size + row_size - 1) / row_size;
536 const uint32_t last_row_size = *data_size % row_size;
537 for (uint32_t row = 0; row < row_count; row++) {
538 uint8_t* scan_line = data_buf->get() + row * row_size;
539 if ((row + 1) * row_size > *data_size) {
540 row_size = last_row_size;
541 }
542 TIFF_PredictLine(scan_line, row_size, BitsPerComponent, Colors, Columns);
543 }
544 return true;
545}
546
547void FlateUncompress(pdfium::span<const uint8_t> src_buf,
548 uint32_t orig_size,
549 std::unique_ptr<uint8_t, FxFreeDeleter>* dest_buf,
550 uint32_t* dest_size,
551 uint32_t* offset) {
552 dest_buf->reset();
553 *dest_size = 0;
554
555 std::unique_ptr<z_stream, FlateDeleter> context(FlateInit());
556 if (!context)
557 return;
558
559 FlateInput(context.get(), src_buf);
560
561 const uint32_t kMaxInitialAllocSize = 10000000;
562 uint32_t guess_size =
563 orig_size ? orig_size
564 : pdfium::base::checked_cast<uint32_t>(src_buf.size() * 2);
565 guess_size = std::min(guess_size, kMaxInitialAllocSize);
566
567 uint32_t buf_size = guess_size;
568 uint32_t last_buf_size = buf_size;
569 std::unique_ptr<uint8_t, FxFreeDeleter> guess_buf(
570 FX_Alloc(uint8_t, guess_size + 1));
571 guess_buf.get()[guess_size] = '\0';
572
573 std::vector<std::unique_ptr<uint8_t, FxFreeDeleter>> result_tmp_bufs;
574 {
575 std::unique_ptr<uint8_t, FxFreeDeleter> cur_buf = std::move(guess_buf);
576 while (true) {
577 uint32_t ret = FlateOutput(context.get(), cur_buf.get(), buf_size);
578 uint32_t avail_buf_size = FlateGetAvailOut(context.get());
579 if (ret != Z_OK || avail_buf_size != 0) {
580 last_buf_size = buf_size - avail_buf_size;
581 result_tmp_bufs.push_back(std::move(cur_buf));
582 break;
583 }
584 result_tmp_bufs.push_back(std::move(cur_buf));
585 cur_buf.reset(FX_Alloc(uint8_t, buf_size + 1));
586 cur_buf.get()[buf_size] = '\0';
587 }
588 }
589
590 // The TotalOut size returned from the library may not be big enough to
591 // handle the content the library returns. We can only handle items
592 // up to 4GB in size.
593 *dest_size = FlateGetPossiblyTruncatedTotalOut(context.get());
594 *offset = FlateGetPossiblyTruncatedTotalIn(context.get());
595 if (result_tmp_bufs.size() == 1) {
596 *dest_buf = std::move(result_tmp_bufs[0]);
597 return;
598 }
599
600 std::unique_ptr<uint8_t, FxFreeDeleter> result_buf(
601 FX_Alloc(uint8_t, *dest_size));
602 uint32_t result_pos = 0;
603 uint32_t remaining = *dest_size;
604 for (size_t i = 0; i < result_tmp_bufs.size(); i++) {
605 std::unique_ptr<uint8_t, FxFreeDeleter> tmp_buf =
606 std::move(result_tmp_bufs[i]);
607 uint32_t tmp_buf_size = buf_size;
608 if (i + 1 == result_tmp_bufs.size()) {
609 tmp_buf_size = last_buf_size;
610 }
611 uint32_t cp_size = std::min(tmp_buf_size, remaining);
612 memcpy(result_buf.get() + result_pos, tmp_buf.get(), cp_size);
613 result_pos += cp_size;
614 remaining -= cp_size;
615 }
616 *dest_buf = std::move(result_buf);
617}
618
619enum class PredictorType : uint8_t { kNone, kFlate, kPng };
620static PredictorType GetPredictor(int predictor) {
621 if (predictor >= 10)
622 return PredictorType::kPng;
623 if (predictor == 2)
624 return PredictorType::kFlate;
625 return PredictorType::kNone;
626}
627
628class FlateScanlineDecoder : public ScanlineDecoder {
629 public:
630 FlateScanlineDecoder(pdfium::span<const uint8_t> src_span,
631 int width,
632 int height,
633 int nComps,
634 int bpc);
635 ~FlateScanlineDecoder() override;
636
637 // ScanlineDecoder:
638 bool Rewind() override;
639 pdfium::span<uint8_t> GetNextLine() override;
640 uint32_t GetSrcOffset() override;
641
642 protected:
644 const pdfium::span<const uint8_t> m_SrcBuf;
646};
647
648FlateScanlineDecoder::FlateScanlineDecoder(pdfium::span<const uint8_t> src_span,
649 int width,
650 int height,
651 int nComps,
652 int bpc)
653 : ScanlineDecoder(width,
654 height,
655 width,
656 height,
657 nComps,
658 bpc,
659 fxge::CalculatePitch8OrDie(bpc, nComps, width)),
660 m_SrcBuf(src_span),
661 m_Scanline(m_Pitch) {}
662
663FlateScanlineDecoder::~FlateScanlineDecoder() {
664 // Span in superclass can't outlive our buffer.
665 m_pLastScanline = pdfium::span<uint8_t>();
666}
667
668bool FlateScanlineDecoder::Rewind() {
669 m_pFlate.reset(FlateInit());
670 if (!m_pFlate)
671 return false;
672
673 FlateInput(m_pFlate.get(), m_SrcBuf);
674 return true;
675}
676
677pdfium::span<uint8_t> FlateScanlineDecoder::GetNextLine() {
678 FlateOutput(m_pFlate.get(), m_Scanline.data(), m_Pitch);
679 return m_Scanline;
680}
681
682uint32_t FlateScanlineDecoder::GetSrcOffset() {
683 return FlateGetPossiblyTruncatedTotalIn(m_pFlate.get());
684}
685
686class FlatePredictorScanlineDecoder final : public FlateScanlineDecoder {
687 public:
688 FlatePredictorScanlineDecoder(pdfium::span<const uint8_t> src_span,
689 int width,
690 int height,
691 int comps,
692 int bpc,
693 PredictorType predictor,
694 int Colors,
695 int BitsPerComponent,
696 int Columns);
697 ~FlatePredictorScanlineDecoder() override;
698
699 // ScanlineDecoder:
700 bool Rewind() override;
701 pdfium::span<uint8_t> GetNextLine() override;
702
703 private:
704 void GetNextLineWithPredictedPitch();
705 void GetNextLineWithoutPredictedPitch();
706
707 const PredictorType m_Predictor;
708 int m_Colors = 0;
709 int m_BitsPerComponent = 0;
710 int m_Columns = 0;
711 uint32_t m_PredictPitch = 0;
712 size_t m_LeftOver = 0;
713 DataVector<uint8_t> m_LastLine;
714 DataVector<uint8_t> m_PredictBuffer;
715 DataVector<uint8_t> m_PredictRaw;
716};
717
718FlatePredictorScanlineDecoder::FlatePredictorScanlineDecoder(
719 pdfium::span<const uint8_t> src_span,
720 int width,
721 int height,
722 int comps,
723 int bpc,
724 PredictorType predictor,
725 int Colors,
726 int BitsPerComponent,
727 int Columns)
728 : FlateScanlineDecoder(src_span, width, height, comps, bpc),
729 m_Predictor(predictor) {
730 DCHECK(m_Predictor != PredictorType::kNone);
731 if (BitsPerComponent * Colors * Columns == 0) {
732 BitsPerComponent = m_bpc;
733 Colors = m_nComps;
734 Columns = m_OrigWidth;
735 }
736 m_Colors = Colors;
737 m_BitsPerComponent = BitsPerComponent;
738 m_Columns = Columns;
739 m_PredictPitch =
740 fxge::CalculatePitch8OrDie(m_BitsPerComponent, m_Colors, m_Columns);
741 m_LastLine.resize(m_PredictPitch);
742 m_PredictBuffer.resize(m_PredictPitch);
743 m_PredictRaw.resize(m_PredictPitch + 1);
744}
745
746FlatePredictorScanlineDecoder::~FlatePredictorScanlineDecoder() {
747 // Span in superclass can't outlive our buffer.
748 m_pLastScanline = pdfium::span<uint8_t>();
749}
750
751bool FlatePredictorScanlineDecoder::Rewind() {
752 if (!FlateScanlineDecoder::Rewind())
753 return false;
754
755 m_LeftOver = 0;
756 return true;
757}
758
759pdfium::span<uint8_t> FlatePredictorScanlineDecoder::GetNextLine() {
760 if (m_Pitch == m_PredictPitch)
761 GetNextLineWithPredictedPitch();
762 else
763 GetNextLineWithoutPredictedPitch();
764 return m_Scanline;
765}
766
767void FlatePredictorScanlineDecoder::GetNextLineWithPredictedPitch() {
768 switch (m_Predictor) {
769 case PredictorType::kPng:
770 FlateOutput(m_pFlate.get(), m_PredictRaw.data(), m_PredictPitch + 1);
771 PNG_PredictLine(m_Scanline, m_PredictRaw, m_LastLine, m_BitsPerComponent,
772 m_Colors, m_Columns);
773 memcpy(m_LastLine.data(), m_Scanline.data(), m_PredictPitch);
774 break;
775 case PredictorType::kFlate:
776 FlateOutput(m_pFlate.get(), m_Scanline.data(), m_Pitch);
777 TIFF_PredictLine(m_Scanline.data(), m_PredictPitch, m_bpc, m_nComps,
778 m_OutputWidth);
779 break;
780 case PredictorType::kNone:
781 NOTREACHED_NORETURN();
782 }
783}
784
785void FlatePredictorScanlineDecoder::GetNextLineWithoutPredictedPitch() {
786 size_t bytes_to_go = m_Pitch;
787 size_t read_leftover = m_LeftOver > bytes_to_go ? bytes_to_go : m_LeftOver;
788 if (read_leftover) {
789 memcpy(m_Scanline.data(), &m_PredictBuffer[m_PredictPitch - m_LeftOver],
790 read_leftover);
791 m_LeftOver -= read_leftover;
792 bytes_to_go -= read_leftover;
793 }
794 while (bytes_to_go) {
795 switch (m_Predictor) {
796 case PredictorType::kPng:
797 FlateOutput(m_pFlate.get(), m_PredictRaw.data(), m_PredictPitch + 1);
798 PNG_PredictLine(m_PredictBuffer, m_PredictRaw, m_LastLine,
799 m_BitsPerComponent, m_Colors, m_Columns);
800 memcpy(m_LastLine.data(), m_PredictBuffer.data(), m_PredictPitch);
801 break;
802 case PredictorType::kFlate:
803 FlateOutput(m_pFlate.get(), m_PredictBuffer.data(), m_PredictPitch);
804 TIFF_PredictLine(m_PredictBuffer.data(), m_PredictPitch,
805 m_BitsPerComponent, m_Colors, m_Columns);
806 break;
807 case PredictorType::kNone:
808 NOTREACHED_NORETURN();
809 }
810 size_t read_bytes =
811 m_PredictPitch > bytes_to_go ? bytes_to_go : m_PredictPitch;
812 fxcrt::spancpy(pdfium::make_span(m_Scanline).subspan(m_Pitch - bytes_to_go),
813 pdfium::make_span(m_PredictBuffer).first(read_bytes));
814 m_LeftOver += m_PredictPitch - read_bytes;
815 bytes_to_go -= read_bytes;
816 }
817}
818
819} // namespace
820
821// static
822std::unique_ptr<ScanlineDecoder> FlateModule::CreateDecoder(
823 pdfium::span<const uint8_t> src_span,
824 int width,
825 int height,
826 int nComps,
827 int bpc,
828 int predictor,
829 int Colors,
830 int BitsPerComponent,
831 int Columns) {
832 PredictorType predictor_type = GetPredictor(predictor);
833 if (predictor_type == PredictorType::kNone) {
834 return std::make_unique<FlateScanlineDecoder>(src_span, width, height,
835 nComps, bpc);
836 }
837 return std::make_unique<FlatePredictorScanlineDecoder>(
838 src_span, width, height, nComps, bpc, predictor_type, Colors,
839 BitsPerComponent, Columns);
840}
841
842// static
844 bool bLZW,
845 pdfium::span<const uint8_t> src_span,
846 bool bEarlyChange,
847 int predictor,
848 int Colors,
849 int BitsPerComponent,
850 int Columns,
851 uint32_t estimated_size,
852 std::unique_ptr<uint8_t, FxFreeDeleter>* dest_buf,
853 uint32_t* dest_size) {
854 dest_buf->reset();
855 uint32_t offset = 0;
856 PredictorType predictor_type = GetPredictor(predictor);
857
858 if (bLZW) {
859 auto decoder = std::make_unique<CLZWDecoder>(src_span, bEarlyChange);
860 if (!decoder->Decode())
861 return FX_INVALID_OFFSET;
862
863 offset = decoder->GetSrcSize();
864 *dest_size = decoder->GetDestSize();
865 *dest_buf = decoder->TakeDestBuf();
866 } else {
867 FlateUncompress(src_span, estimated_size, dest_buf, dest_size, &offset);
868 }
869
870 bool ret = false;
871 switch (predictor_type) {
872 case PredictorType::kNone:
873 return offset;
874 case PredictorType::kPng:
875 ret =
876 PNG_Predictor(Colors, BitsPerComponent, Columns, dest_buf, dest_size);
877 break;
878 case PredictorType::kFlate:
879 ret = TIFF_Predictor(Colors, BitsPerComponent, Columns, dest_buf,
880 dest_size);
881 break;
882 }
883 return ret ? offset : FX_INVALID_OFFSET;
884}
885
886// static
887DataVector<uint8_t> FlateModule::Encode(pdfium::span<const uint8_t> src_span) {
888 const unsigned long src_size =
889 pdfium::base::checked_cast<unsigned long>(src_span.size());
890 pdfium::base::CheckedNumeric<unsigned long> safe_dest_size = src_size;
891 safe_dest_size += src_size / 1000;
892 safe_dest_size += 12;
893 unsigned long dest_size = safe_dest_size.ValueOrDie();
894 DataVector<uint8_t> dest_buf(dest_size);
895 if (!FlateCompress(dest_buf.data(), &dest_size, src_span.data(), src_size))
896 return {};
897
898 dest_buf.resize(pdfium::base::checked_cast<size_t>(dest_size));
899 return dest_buf;
900}
901
902} // namespace fxcodec
static uint32_t FlateOrLZWDecode(bool bLZW, pdfium::span< const uint8_t > src_span, bool bEarlyChange, int predictor, int Colors, int BitsPerComponent, int Columns, uint32_t estimated_size, std::unique_ptr< uint8_t, FxFreeDeleter > *dest_buf, uint32_t *dest_size)
ScanlineDecoder(int nOrigWidth, int nOrigHeight, int nOutputWidth, int nOutputHeight, int nComps, int nBpc, uint32_t nPitch)
const pdfium::span< const uint8_t > m_SrcBuf
static void * my_alloc_func(void *opaque, unsigned int items, unsigned int size)
std::unique_ptr< z_stream, FlateDeleter > m_pFlate
DataVector< uint8_t > m_Scanline
static void my_free_func(void *opaque, void *address)
#define FX_INVALID_OFFSET
uint32_t CalculatePitch8OrDie(uint32_t bpc, uint32_t components, int width)
void Dealloc(void *ptr)